A BRITISH scientist has been awarded the 2020 Nobel Prize in physics for his work on showing the general theory of relativity leads to the formation of black holes.
Sir Roger Penrose shares the prize with Reinhard Genzel and Andrea Ghez, who discovered that an invisible and extremely heavy object governs the orbits of stars at the centre of our galaxy.
A supermassive black hole is the only currently known explanation.
This morning Roger Penrose found out he had been awarded this year's #NobelPrize in Physics.
— The Nobel Prize (@NobelPrize) October 6, 2020
Shortly afterwards he sent us this photo from his home in Oxford. Stay tuned for our phone interview with him - coming soon. pic.twitter.com/EaZxSthlaS
The Royal Swedish Academy of Sciences made the announcement on Tuesday, setting out that Sir Roger would take home half of the 10 million Swedish kronor (£864,000) prize, with the other two winners splitting the other half.
Read more: one of the last sisters at the Wantage convent dies
Sir Roger, who was born in Colchester in 1931, used 'ingenious mathematical methods' in his proof that black holes are a direct consequence of Albert Einstein’s general theory of relativity, the committee said.
It added that Einstein did not himself believe that black holes – super-heavyweight monsters that capture everything that enters them – really exist.
In January 1965, 10 years after Einstein’s death, Sir Roger, Emeritus Professor at the Mathematical Institute of the University of Oxford, proved that black holes really can form and described them in detail – at their heart, black holes hide a singularity in which all the known laws of nature cease.
The panel said: “His groundbreaking article is still regarded as the most important contribution to the general theory of relativity since Einstein.”
Roger Penrose – awarded this year’s #NobelPrize in Physics – was born in 1931 in Colchester, UK.
— The Nobel Prize (@NobelPrize) October 6, 2020
He is a professor at @UniofOxford, UK.https://t.co/Jm9iOU99N3 pic.twitter.com/Vsm7xHZivv
Professors Genzel and Ghez, born in Germany and America respectively, each lead a group of astronomers that, since the early 1990s, has focused on a region called Sagittarius A* at the centre of our galaxy.
The orbits of the brightest stars closest to the middle of the Milky Way have been mapped with increasing precision.
The measurements of these two groups agree, with both finding an extremely heavy, invisible object that pulls on the jumble of stars, causing them to rush around at dizzying speeds.
Around four million solar masses are packed together in a region no larger than our solar system.
Read more: nearly 50 students at Oxford Brookes test positive for coronavirus
Using the world’s largest telescopes, the pair developed methods to see through the huge clouds of interstellar gas and dust to the centre of the Milky Way.
According to the committee, their pioneering work has given us the most convincing evidence yet of a supermassive black hole at the centre of the Milky Way.
David Haviland, chair of the Nobel committee for physics, said: “The discoveries of this year’s Laureates have broken new ground in the study of compact and supermassive objects.
“But these exotic objects still pose many questions that beg for answers and motivate future research.
“Not only questions about their inner structure, but also questions about how to test our theory of gravity under the extreme conditions in the immediate vicinity of a black hole.”
Comments: Our rules
We want our comments to be a lively and valuable part of our community - a place where readers can debate and engage with the most important local issues. The ability to comment on our stories is a privilege, not a right, however, and that privilege may be withdrawn if it is abused or misused.
Please report any comments that break our rules.
Read the rules here